Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS Negl Trop Dis ; 17(4): e0011250, 2023 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2294588

RESUMEN

BACKGROUND: The control of onchocerciasis currently relies on annual distribution of single dose ivermectin. Because ivermectin has minimal effects on the adult parasite, mass drug administration (MDA) campaigns against onchocerciasis require at least 15 years of annual uninterrupted ivermectin distribution. Mathematical models have predicted that short-term disruption of MDA (as was seen during COVID-19) could impacted the microfilaridermia prevalence depending on the pre-control endemicity and the histories of treatment, requiring corrective measures (such as biannual MDA) to mitigate the effect on onchocerciasis elimination. Field evidence supporting this prediction, however, has yet to be gathered. This study aimed to assess the impact of ~2 years disruption of MDA on onchocerciasis transmission indicators. METHODOLOGY: A cross-sectional survey was carried out in 2021 in seven villages of Bafia and Ndikinimeki, two health districts located in the Centre Region, Cameroon, where MDA has been ongoing for two decades, but interrupted in 2020 as a response to the COVID-19 pandemic. Volunteers aged 5 years and above were enrolled for clinical and parasitological examinations for onchocerciasis. Data were compared with pre-COVID-19 prevalence and intensity of infection from the same communities to measure changes over time. PRINCIPAL FINDINGS: A total of 504 volunteers (50.3% males), aged 5-99 years (Median: 38; IQR: 15-54) was enrolled in the two health districts. The overall prevalence of microfilaridermia in 2021 was similar in Ndikinimeki health district (12.4%; 95% CI: 9.7-15.6) and Bafia health district (15.1%; 95% CI: 11.1-19.8) (p-value = 0.16). Microfilaridermia prevalences were either similar between 2018 and 2021 in the communities of Ndikinimeki health district (19.3% vs 12.8% (p = 0.057) for Kiboum 1; and 23.7% vs 21.4% (p = 0.814) for Kiboum 2), or higher in 2019 compared to 2021 in the communities of Bafia health district (33.3% vs 20.0% (p = 0.035) for Biatsota). The mean microfilarial densities in these communities dropped from 5.89 (95% CI: 4.77-7.28) mf/ss to 2.4 (95% CI: 1.68-3.45) mf/ss (p-value < 0.0001), and from 4.81 (95% CI: 2.77-8.31) mf/ss to 4.13 (95% CI: 2.49-6.86) mf/ss (p-value < 0.02) in Bafia and Ndikinimeki health districts, respectively. Community Microfilarial Load (CMFL) dropped from 1.08-1.33 mf/ss in 2019 to 0.052-0.288 mf/ss in 2021 in Bafia health district while remaining stable in the Ndikinimeki health district. CONCLUSION/SIGNIFICANCE: The continued decline in prevalence and CMFL observed ~2 years after MDA disruption is consistent with mathematical predictions (ONCHOSIM) and shows that additional efforts and resources are not needed to mitigate the effects of short-term MDA disruption in highly endemic settings prior to intervention with long treatment histories.


Asunto(s)
COVID-19 , Oncocercosis , Adulto , Masculino , Animales , Humanos , Femenino , Ivermectina/uso terapéutico , Ivermectina/farmacología , Oncocercosis/epidemiología , Oncocercosis/prevención & control , Oncocercosis/tratamiento farmacológico , Administración Masiva de Medicamentos , Estudios Transversales , Pandemias , COVID-19/epidemiología , COVID-19/prevención & control , Prevalencia , Microfilarias
2.
JAMA Netw Open ; 6(3): e231713, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2277529

RESUMEN

Importance: Multisystem inflammatory syndrome in children (MIS-C) is a severe and unrestrained inflammatory response with multiorgan involvement, which occurs within a few weeks following the resolution of acute SARS-CoV-2 infection. The complement system is a vital part of the innate immune system and plays a role in COVID-19 pathogenesis. Objective: To examine and compare the levels of complement components and regulators along with complement activation products in the different clinical spectrum of children with SARS-CoV-2 and a control group. Design, Setting, and Participants: This cross-sectional study analyzed children with MIS-C admitted to a single hospital in India from June through September 2020. Eligible participants were children who were hospitalized of either sex, aged 1 to 18 years. Data were analyzed August 2022. Measures: Levels of complement components and regulators along with complement activation products in all the groups of children. Mann-Whitney U test and Kruskal-Wallis analysis were used to compare the complement component levels, and Spearman rank correlation analysis was used to describe the association between complement components and laboratory and biochemical parameters. Results: A total 145 children were included (median age, 5 years [range, 1 month-17 years); 84 [58%] male): 44 children with MIS-C, 33 with acute COVID-19 (reverse transcriptase-polymerase chain reaction [RT-PCR] positive), 47 with convalescent COVID-19 (immunoglobulin G-positive non-MIS-C) and 21 children for a control group (both serology and RT-PCR negative). Children with MIS-C and COVID-19 had higher levels of C1q (geometric mean [SD]: MIS-C, 61.5 [18.5] ng/mL; acute COVID-19, 56.9 [18.6] ng/mL; controls, 24.1 [3.3] ng/mL), C2 (MIS-C, 605.8 [219.7] ng/mL; acute COVID-19, 606.4 [167.7] ng/mL; controls, 255.9 [73.3] ng/mL), C3 (MIS-C, 318.2 [70.7] ng/mL; acute COVID-19, 237.7 [61.8] ng/mL; controls, 123.4 [15.7] ng/mL), C4b (MIS-C, 712.4 ng/mL; acute COVID-19, 640.7 ng/mL; controls, 351.5 ng/mL), C5 (MIS-C, 1487 ng/mL; acute COVID-19, 1364 ng/mL; controls, 561.9 ng/mL), C5a, (MIS-C, 2614.0 [336.2] ng/mL; acute COVID-19, 1826.0 [541.0] ng/mL; controls, 462.5 [132.4] ng/mL), C3b/iC3b (MIS-C, 3971.0 [635.1] ng/mL; acute COVID-19, 3702.0 [653.9] ng/mL; controls, 2039.0 [344.5] ng/mL), and factor B (MIS-C, 47.6 [7.8] ng/mL; acute COVID-19, 44.6 [6.3] ng/mL; controls, 27.5 [5.0] ng/mL), factor D (MIS-C, 44.0 [17.2] ng/mL; acute COVID-19, 33.8 [18.4] ng/mL; controls, 21.3 [6.1] ng/mL), and factor H (MIS-C, 53.1 [4.0] ng/mL; acute COVID-19, 50.8 [5.7] ng/mL; controls, 43.6 [3.8] ng/mL) in comparison with convalescent and control children. In addition, children with MIS-C had significantly elevated levels of C3 (318.2 [70.7] ng/mL vs 237.7 [61.8] ng/mL), C5a (2614 [336.2] ng/mL vs 1826 [541.0] ng/mL), and mannose-binding lectin (79.4 [12.4] ng/mL vs 69.6 [14.7] ng/mL) in comparison to children with acute COVID-19. Levels of some of these analytes at admission (ie, pretreatment) were more elevated in children with MIS-C who needed pediatric intensive care unit (PICU) support as compared with those who did not require PICU support, and in children with COVID-19 who developed moderate to severe disease compared with those who developed mild disease. Overall, MIS-C and acute COVID-19 were associated with the hyperactivation of complement components and complement regulators. Conclusions and Relevance: In this cross-sectional study, the complement system was associated with the pathogenesis of MIS-C and COVID-19 in children; complement inhibition could be further explored as a potential treatment option.


Asunto(s)
COVID-19 , Enfermedades del Tejido Conjuntivo , Niño , Masculino , Humanos , Preescolar , Femenino , SARS-CoV-2 , Estudios Transversales , Hospitalización , Factores Inmunológicos
3.
Front Med (Lausanne) ; 9: 1050804, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2198996

RESUMEN

Introduction: Multisystem Inflammatory Syndrome in children (MIS-C) is a serious inflammatory sequela of SARS-CoV2 infection. The pathogenesis of MIS-C is vague and matrix metalloproteinases (MMPs) may have an important role. Matrix metalloproteinases (MMPs) are known drivers of lung pathology in many diseases. Methods: To elucidate the role of MMPs in pathogenesis of pediatric COVID-19, we examined their plasma levels in MIS-C and acute COVID-19 children and compared them to convalescent COVID-19 and children with other common tropical diseases (with overlapping clinical manifestations). Results: Children with MIS-C had elevated levels of MMPs (P < 0.005 statistically significant) in comparison to acute COVID-19, other tropical diseases (Dengue fever, typhoid fever, and scrub typhus fever) and convalescent COVID-19 children. PCA and ROC analysis (sensitivity 84-100% and specificity 80-100%) showed that MMP-8, 12, 13 could help distinguish MIS-C from acute COVID-19 and other tropical diseases with high sensitivity and specificity. Among MIS-C children, elevated levels of MMPs were seen in children requiring intensive care unit admission as compared to children not needing intensive care. Similar findings were noted when children with severe/moderate COVID-19 were compared to children with mild COVID-19. Finally, MMP levels exhibited significant correlation with laboratory parameters, including lymphocyte counts, CRP, D-dimer, Ferritin and Sodium levels. Discussion: Our findings suggest that MMPs play a pivotal role in the pathogenesis of MIS-C and COVID-19 in children and may help distinguish MIS-C from other conditions with overlapping clinical presentation.

4.
PLoS Pathog ; 18(11): e1010915, 2022 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2098780

RESUMEN

The clinical presentation of MIS-C overlaps with other infectious/non-infectious diseases such as acute COVID-19, Kawasaki disease, acute dengue, enteric fever, and systemic lupus erythematosus. We examined the ex-vivo cellular parameters with the aim of distinguishing MIS-C from other syndromes with overlapping clinical presentations. MIS-C children differed from children with non-MIS-C conditions by having increased numbers of naïve CD8+ T cells, naïve, immature and atypical memory B cells and diminished numbers of transitional memory, stem cell memory, central and effector memory CD4+ and CD8+ T cells, classical, activated memory B and plasma cells and monocyte (intermediate and non-classical) and dendritic cell (plasmacytoid and myeloid) subsets. All of the above alterations were significantly reversed at 6-9 months post-recovery in MIS-C. Thus, MIS-C is characterized by a distinct cellular signature that distinguishes it from other syndromes with overlapping clinical presentations. Trial Registration: ClinicalTrials.gov clinicaltrial.gov. No: NCT04844242.


Asunto(s)
COVID-19 , Lupus Eritematoso Sistémico , Niño , Humanos , Linfocitos T CD8-positivos , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico
5.
Frontiers in immunology ; 13, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1939995

RESUMEN

We generated CD4+ T cell lines (TCLs) reactive to either SARS-CoV-2 spike (S) or membrane (M) proteins from unexposed naïve T cells from six healthy donor volunteers to understand in fine detail whether the S and M structural proteins have intrinsic differences in driving antigen-specific CD4+ T cell responses. Having shown that each of the TCLs were antigen-specific and antigen-reactive, single cell mRNA analyses demonstrated that SARS-CoV-2 S and M proteins drive strikingly distinct molecular signatures. Whereas the S-specific CD4+ T cell transcriptional signature showed a marked upregulation of CCL1, CD44, IL17RB, TNFRSF18 (GITR) and IGLC3 genes, in general their overall transcriptome signature was more similar to CD4+ T cell responses induced by other viral antigens (e.g. CMV). However, the M protein-specific CD4+ TCLs have a transcriptomic signature that indicate a marked suppression of interferon signaling, characterized by a downregulation of the genes encoding ISG15, IFITM1, IFI6, MX1, STAT1, OAS1, IFI35, IFIT3 and IRF7 (a molecular signature which is not dissimilar to that found in severe COVID-19). Our study suggests a potential link between the antigen specificity of the SARS-CoV-2-reactive CD4+ T cells and the development of specific sets of adaptive immune responses. Moreover, the balance between T cells of significantly different specificities may be the key to understand how CD4+ T cell dysregulation can determine the clinical outcomes of COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA